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Summary 

This whitepaper introduces ANNA, Axelyf’s novel AI model for predicting lipid nanoparticle 
(LNP) performance in mRNA delivery. By training on diverse and heterogeneous datasets 
without manual normalization, ANNA enables more flexible, real-world relevant predictions 
than previous approaches. We benchmark ANNA against AGILE and LiON to demonstrate 
its performance and generalizability. 

LNPs for mRNA delivery  

The field of RNA-based therapies is transforming modern medicine, from life-saving 
vaccines to promising treatments for cancer and genetic disorders1. However, the full range 
of applications of RNAs, especially large versions like mRNA, is currently limited by several 
challenges in delivery. To be effective, mRNA protection in vivo is key, so it needs to be 
delivered in a vehicle that protects it from degradation by nucleases while it transits through 
the body to the target cells. Potency of delivery then depends on uptake and efficient release 
of mRNA inside cells to be translated into protein. Safety in terms of vehicle effects on 
immune stimulation and liver accumulation of lipids are also critical to developability of 
products with RNA. Addressing selectively to tissue and/or cell type(s) is an ongoing 
challenge, in particular in the quest for non-viral delivery options. Lipid nanoparticles (LNPs) 
are a prime example of a non-viral delivery technology that has proven effective as a vehicle 
for mRNA delivery, as demonstrated by the success of the COVID-19 vaccines from 
Moderna and BioNTech/Pfizer2. However, further advancements in LNP design are needed 
to unlock the full range of applications of mRNA through improved targeting, enhanced 
efficiency, and safe repeat dosing, especially for therapeutic applications. 

LNPs for RNA delivery are typically made of four key lipid components, i.e., an ionizable lipid, 
cholesterol, a PEG lipid conjugate, and a phospholipid. Each of these components plays a 
distinct role in LNP performance and mRNA delivery. Ionizable lipids are particularly 
important and have been the focus of extensive research in the past two decades because 
they drive in large part the potency of the particle for delivery. Ionizable lipids, also known as 
amino lipids, have pH-responsive behavior that facilitates endosomal escape, reduce off-
target interactions due to their neutral charge at physiological pH, and affect tissue 
distribution and delivery efficiency.  
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Figure 1: LNPs are roughly spherical particles in the range of 10’s to 100+ nm in diameter and made of several types of 
lipids and cargos. LNPs are used as delivery vehicles for multiple therapeutic molecules, from small NCEs, to small 
RNAs, to large mRNAs and DNA constructs encoding for functional proteins and protein complexes. The estimated 
numbers of each LNP component in a single particle refer to a 70-nm diameter LNP. 

Axelyf is innovating on every aspect of LNP chemistry, leveraging its best-in-class lipid library 
to design more effective and precisely targeted delivery systems. By improving delivery and 
fine-tuning each component to match specific therapeutic goals, we can dramatically 
expand the reach of mRNA-based medicine, reduce doses through potency improvements, 
while minimizing undesired side effects for patients. We are now pairing the proven 
expertise of our team with AI to push the edge of innovation in nanoparticle design. 

Advancing LNP Design with AI 

Artificial Intelligence (AI) has catalyzed huge progress in many industries, including the life 
sciences. From protein structure prediction with AlphaFold to the latest large language 
models being applied to protein and RNA design, the progress in the past decade has been 
breathtaking. Similarly, AI has the potential to revolutionize lipid and LNP design.  

Modeling small molecules, and especially lipids used in large assemblies like LNPs, 
presents unique challenges due to the vast chemical space and non-linear nature of 3D 
molecular structure. Additionally, the biological performance of RNA-LNPs is the net result 
of a complex multi-step process that is not completely understood and relies on scaling 
multiple hurdles, from LNP assembly in the lab through to biological effects in an organism. 
These challenges make advances in the field more difficult to achieve but also underscore 
the exciting potential of using AI to uncover patterns and design principles that traditional 
approaches might miss. 
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Although the application of AI to LNPs is still nascent, more studies are published each year, 
and interest continues to grow due to the broad range of applications of RNA medicine.  

Limitations of Current Machine Learning Approaches for LNP Design 

Most existing research on LNP modeling has focused on ionizable lipids as the key variable 
for predicting LNP potency. These models are commonly used for in silico screening, helping 
to identify promising candidates for synthesis and testing. While such models provide a 
useful starting point, they often fail to fully capture the complexity of in vivo LNP 
performance. A major challenge remains in establishing a meaningful connection between 
virtual predictions and experimentally relevant factors, ensuring that model outputs offer 
actionable insights rather than broad categorizations. 

Another major challenge in this field is the scarcity of large and diverse datasets of lipids or 
LNPs with high quality and relevant biological readouts. Existing datasets are also difficult 
to compare, due to a combination of factors such as lack of standardized reference samples, 
incomplete formulation process meta-data, differing experimental models, and 
incompatible measures used for the processed raw experimental results. Hence it is 
challenging to harmonize and aggregate existing datasets into larger meta-datasets for 
training AI models. 

Axelyf’s approach to AI driven LNP design 

At Axelyf, we are dedicated to leading innovation in AI-driven lipid design by translating 
scientific insight into practical tools through a purposeful, pragmatic approach that serves 
real-world research needs. Our focus is to leverage the full informational value of existing 
datasets and to enable identification of truly high-performing lipids from virtual libraries by 
relating their potency to known reference LNPs. 

To achieve this, we designed an Artificial Network for Nanoparticle Assessment model 
(ANNA) that predicts potency unambiguously on a common scale for all samples of the 
meta-dataset, or virtual screening libraries, leading to consistent and comparable 
predictions. 
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Figure 2: Illustration of ANNA’s novel approach. ANNA is trained directly on multiple, diverse datasets in their original 
form. This avoids an intermediate step of manually mapping all samples on a common scale, which in general requires 
additional information, or assumptions, to correlate samples from different datasets. 

 

To validate ANNA’s performance, we benchmarked it against two recent modeling efforts 
that capture different data complexity, modeling approaches, and training strategies.  

The first group3 used a single in vitro dataset to train AGILE, a fine-tuned model designed to 
predict LNP potency. When benchmarked on this dataset, ANNA outperformed AGILE in 
identifying high-performing lipids, demonstrating strong predictive capability with limited, 
homogeneous data (Figure 3). 

 

 

Figure 3: Comparison of ANNA and AGILE in identifying high-performing lipids. (Left) Positive Predictive Value (PPV) and 
True Positive Rate (TPR) for both methods, with ANNA outperforming AGILE. (Right) PPV-TPR curve showing ANNA 
maintaining higher predictive performance across different true positive rates. Further details on the methodology and 
evaluation metrics can be found in the technical details section below. 
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The second group4 introduced a broader benchmark: a more diverse, aggregated dataset 
composed of both published and unpublished results. It was used to train LiON, a model 
built to generalize across in vitro and in vivo applications. The authors found the model to 
benefit from training on the full set of available data rather than exclusively on data matching 
the specific type of targeted predictions. To directly assess how well each model identifies 
potent samples, we defined a subset of high-expression samples from one of the training 
studies and measured predictive accuracy (Figure 4). Both ANNA and LiON achieved high 
positive predictive values with reasonable true-positive rates. 

 

Figure 4: Comparison of ANNA and LiON in identifying high-performing lipids in one study. The study was used in its 
entirety for model training and evaluation. (Left) Positive Predictive Value and True Positive Rate for both methods, 
showing comparable performance. (Right) PPV-TPR curve illustrating the similarity between ANNA and LiON across 
different true positive rates. Further details on the methodology and evaluation metrics can be found in the technical 
details section below. 

However, in a more realistic and challenging evaluation scenario, ANNA's advantage 
becomes clear. By splitting this study’s samples into five smaller subsets, mimicking the 
common challenge of having to train a model on several smaller studies that cannot 
necessarily be combined using a common scale, we tested each model’s ability to 
generalize. ANNA significantly outperformed LiON in identifying top-performing LNPs in 
this setting (Figure 5). 

These results illustrate a key strength of our model: ANNA can make predictions on a 
global scale, even when only trained on smaller studies on their respective local scale. 
This is a particularly valuable model property given the current scarcity of large, 
standardized LNP datasets in the field. 
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Figure 5: Comparison of ANNA and LiON identifying high-performing lipids in one study. The study was artificially divided 
into five parts, treating them as separate studies to assess model generalizability. (Left) Positive Predictive Value and True 
Positive Rate for both methods, showing ANNA outperforming LiON. (Right) PPV-TPR curve demonstrating that ANNA 
maintains higher predictive performance across different true positive rates. Further details on the methodology and 
evaluation metrics can be found in the technical details section below. 

Conclusion 

Modeling of LNP properties will play a critical role in the development of future mRNA 
medicines. A model capable of reliably identifying high performing lipids will reduce the 
efforts, time and money spent on experimental assessment of LNPs, by focusing inherently 
limited resources on the most promising candidates. The limited quality and quantity of the 
currently available experimental data hinders model development using standard 
techniques. By design, the ANNA model can be trained on multiple, diverse, and not directly 
comparable datasets, offering greater flexibility in integrating data from different sources. 
The results presented here demonstrate that ANNA outperforms state-of-the-art models in 
realistic and challenging data environments.   

We are continually working to expand our own training sets and data diversity to further 
refine our models and benchmark against the state of the art. In the process of advancing 
modeling of RNA-LNP properties and performance, our approach prioritizes thoughtful 
model development with an emphasis on real-world usability. By addressing key challenges 
in data integration and model generalizability, we contribute to the long-term advancement 
of predictive modeling in LNP research, ensuring that these tools are not only accurate but 
also applicable in practical settings.  
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Technical details 
Models and datasets were obtained for AGILE and LiON from the respective public Github 
repositories. Datasets were harmonized and inconsistencies corrected.  

The AGILE dataset consists of 1,200 samples with ionizable lipid structure and in vitro expression in 
HeLa cells. The 83 samples with expression values above 9.0 were classified as high performers 
(6.9%). 

The Lion dataset consists of 9,637 samples s from 27 individual in vivo and in vitro studies, with LNP 
composition, formulation, information on the experiment and “delivery” value. The 1,177 samples 
from the dataset with Library_ID “RM_Michael_addition_branched” and Experiment_ID 
“A549_form_screen” were chosen for the analysis. The 152 samples with “delivery” above 5.0 were 
classified as high performers (12.9%). 

Model performance was evaluated using 10-fold cross-validation (CV), repeated ten times with 
different random seeds to ensure robustness. Results shown in the figures are aggregated from the 
resulting 100 different model predictions. Identical splits into training, validation, and test sets were 
used for the respective models in both comparisons. 

For the PPV–TPR curves, PPV and TPR were evaluated from model predictions on each test set for 
varying classification threshold. The graph shows the average PPV values, after interpolation of the 
individual curves on equidistant TPR values. 

For the PPV and TPR bar graph, the classification threshold was determined for each trained model, 
so that prevalence and predicted prevalence coincide for the whole dataset. Using the respective 
threshold, samples from each test set were classified. For each of the ten CV runs, the predictions 
of all test folds were combined and used to calculate PPV and TPR. The graph shows the average 
PPV and TPR values for all ten CV runs. 


